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Recent studies in these laboratories have revealed thatR-di-
azoketones (e.g.,1) undergo rhodium(II)-catalyzed coupling with
alcohols to selectively deliver (Z)-alkoxy enols (e.g.,3, Scheme
1).1,2 When generated under these neutral conditions, alkoxy enols
are sufficiently stable to enable their manipulation in a number
of synthetically useful ways. In particular, we have been interested
in the sigmatropic chemistry of enols derived from allylic alcohols,
which undergo exceptionally facile Claisen rearrangement to
furnish tertiaryR-hydroxy carbonyl compounds.1-3 Recently, we
reported the extension of this tandem enol formation/Claisen
process to furnish tertiaryR-hydroxy allenes.2,4 In that study, it
was found that the standard Claisen conditions, when applied to
propargylic alcohols, also gave rise to a byproduct derived from
an apparent [2,3]-rearrangement (e.g.,5, Scheme 1). Furthermore,
the amount of5 coproduced was dependent both on catalyst load
and ligand. In this communication, we describe investigations that
establish the [2,3]-rearrangement as a versatile, Lewis acid-
catalyzed process that can be selectively promoted or suppressed.
In addition, enantioselective [2,3]-rearrangement can be realized
using a chiral Lewis acid promoter.

Extensive catalyst screening further clarified the relationship
between catalyst structure and reaction course (i.e.,1f4 vs1f5,
Scheme 1), revealing a substantial dependence on electronics (cf.,
Rh2(cap)4 vs Rh2(tfa)4).5,6 However, at the outset, it was unclear
if the observed catalyst dependence derived from perturbation of
the primary sigmatropic event or catalysis of a secondary [1,2]-
R-ketol rearrangement (i.e.,4f5, Scheme 1). Our studies with
allyloxy enols, which undergo [3,3]-rearrangement regardless of
the Rh(II) catalyst employed, first led us to speculate that the
latter process was more likely. In an effort to substantiate this
hypothesis, we devised the isotope-labeling study shown in
Scheme 2.

Diazoketone1 was combined with 3-butyn-2-ol (2) under both
[3,3]-selective (i.e., Rh2(cap)4) and [2,3]-selective (i.e., Rh2(tfa)4)
conditions. Incorporated in each reaction was the independently
prepared, deuterium-labeled analogue of the unanticipated re-
gioisomer. Use of Rh2(tfa)4 in the presence of D-4 gave rise to
the apparent [2,3]-product5 free of deuterium incorporation.

Similarly, use of Rh2(cap)4 in the presence of D-5 gave exclusively
protic [3,3]-product4, illustrating that the anticipated [1,2]-R-
ketol rearrangement process was not operative.

Having demonstrated that rearrangement products4 and5 arise
via independent pathways, we began to favor a mechanism
wherein the rhodium(II) catalyst adopts a dual role, promoting
both enol formation and [2,3]-rearrangement. In this scenario,
coordination of Rh(II) to the enol ether oxygen promotes an SNI′
process (Scheme 3). Attenuating the Lewis acidity of the Rh(II)
catalyst (i.e., Rh2(cap)4 vs Rh2(tfa)4) would therefore be expected
to slow this process, enabling thermal [3,3]-rearrangement to
predominate. Initial support for this hypothesis was found in the
reaction kinetics, which showed that [2,3]-rearrangement of3 in
the presence of 0.1 mol % Rh2(tfa)4 (t1/2 ) 5.4 min, 25°C) was
dramatically accelerated relative to that in the presence of 1 mol
% Rh2(OAc)4 (t1/2 ) 3.5 h, 40°C). To demonstrate that this rate
enhancement derived from interaction of the enol with Rh(II),
we treated a solution of1 and2 (1.2 equiv) with 1 mol % Rh2-
(OAc)4, cleanly generating enol3 (Scheme 4, observed by1H
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NMR).7 Treatment of the enol solution with 0.5 mol % Rh2(tfa)4
resulted in rapid [2,3]-rearrangement at room temperature, a
process that could be completely suppressed by prior addition of
dimethyl sulfide (2 equiv) to yield only [3,3]-rearrangement
product4 upon heating.8

Having established the basis for the divergent reactivity of enol
3, we explored our ability to manipulate reaction outcome in
related substrates. As shown in Tables 1 and 2, similar control
can be achieved with a number ofR-diazoketones and propargylic
alcohols affording a variety of substituted allenes in good to
excellent yield. With doubly stabilizedR-diazoketones (i.e.,1 and
6), use of Rh2(tfa)4 affords exclusively the product of [2,3]-
rearrangement. Use of Rh2(cap)4 generates the [3,3]-product with
1; however, this catalyst does not efficiently dediazotize6. The
identical conditions (Rh2(cap)4, benzene, reflux) are employed
to effect exclusive [3,3]-rearrangement with monostabilized
R-diazoketones (i.e.,7 and 8, Table 2), while the harsher Rh2-
(tfa)4 catalyst is replaced by a higher catalyst loading of the more
mild Rh2(oct)4 to furnish the [2,3]-product.9 In accord with our
studies of allyloxy enols, tautomerization of propargyloxy enols
is observed to compete with [3,3]-rearrangement in certain

substrates due to a substituent-controlled reduction in [3,3] rate.2

However, this competition is not observed with [2,3]-rearrange-
ment. Reduced yields are observed for both processes with
2-methyl-3-butyn-2-ol (cf., entries 4a,b) due to inefficient car-
benoid capture.10

The determination that Rh2(tfa)4 was functioning in a Lewis
acidic capacity to facilitate [2,3]-rearrangement led to an inves-
tigation of other Lewis acid additives for similar activity. As can
be seen in Table 3, enol3 is successfully intercepted by several
Lewis acids, including (pybox)-Sn(II) (9) and (pybox)-Cu(II) (10)
catalysts which afford, at room temperature and with low catalyst
loadings, the [2,3]-product (5) via a three-step, two metal-
catalyzed process.12

The success of Lewis acids9 and10 prompted us to explore
the possibility of asymmetric induction in the [2,3]-rearrangement
(Scheme 5). We were delighted to find that treatment of
R-diazoketone1 and propargyl alcohol (1.2 equiv) with 1 mol %
Rh2(OAc)4 affords enol11, which, upon treatment with [Cu(S,S)-
Ph-pybox(H2O)2](OTf)2 (12), affords (R)-13 in 61% yield13 and(7) <10% [2,3]-rearrangement of enol3 is observed after 1 h in thepresence

of 1 mol % Rh2(OAc)4 at 25°C.
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Table 1. Examples with Doubly StabilizedR-Diazoketones11

a Conditions A: 0.5 mol % Rh2(cap)4, PhH, reflux, 10 min.
b Conditions B: 0.25 mol % Rh2(tfa)4, PhH, 10 min rt (1) or reflux
(6). c A 44% yield of tautomerized product was also isolated.d An 83%
yield of tautomerized product was isolated exclusively.

Table 2. Examples with MonostabilizedR-Diazoketones11

a Conditions A: 0.25 mol % Rh2(cap)4, PhH, reflux, 10 min.
b Conditions B: 5 mol % Rh2(oct)4, PhH, reflux, 10 min.c 20 mol %
Rh2(oct)4 was employed.d An 11% yield of enonei (ref 10) was also
isolated.e A 5% yield of enoneii (ref 10) was also isolated.f Only
enoneii (ref 10) was isolated in 25% yield.

Table 3. Effect of Lewis Acid Additives on Rearrangement of
Enol 3a

Lewis acid additive/conditions 5:4b yield, %

no additive, PhH,∆, 10 min 1:2.3 78
1 equiv CuSO4, PhH,∆, 10 min 2.5:1 70
5 mol % AgBF4, PhH, rt, 2 min 60:1 80
15 mol % [Sn-((S,S)-Ph-pybox)](OTf)2 (9),
CH2Cl2, rt, 35 min

>100:1 76

2.5 mol % [Cu-((S,S)-Ph-pybox)](OTf)2 (10),
PhH, rt, 5 min

>100:1 67

a Generated in all cases by treatment of1 and 2 with 1 mol %
Rh2(OAc)4, rt, 5 min. b Ratios determined by integration of1H NMR
resonances.

5096 J. Am. Chem. Soc., Vol. 123, No. 21, 2001 Communications to the Editor



90% ee. The sense of stereochemical induction is predicted by
enol complex14 (Figure 1), which represents the calculated global
minimum conformation of this complex by Monte Carlo methods,
further minimized by PM3 level calculations.14,15

In summary, we have shown that (Z)-propargyloxy enols are
capable of undergoing rearrangement to allenylR-hydroxyketones
via thermal [3,3]-rearrangement and Lewis acid-catalyzed [2,3]-
rearrangement pathways. The latter has proven amenable to
asymmetric catalysis, affording [2,3]-rearrangement product in
good yield and high % ee. Further studies into asymmetric
catalysis of the [2,3]-rearrangement and the chemistry of alkoxy
enols are in progress.
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Scheme 5

Figure 1. Computational structure of enol complex14.
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