Communications to the Editor

Catalyst-Based Control of [2,3]- and [3,3]-Rearrangement in α-Diazoketone-Derived **Propargyloxy Enols**

George A. Moniz and John L. Wood*

Sterling Chemistry Laboratory, Department of Chemistry Yale University, New Haven, Connecticut 06520-8107

Received February 27, 2001

Revised Manuscript Received March 26, 2001 Recent studies in these laboratories have revealed that α -diazoketones (e.g., 1) undergo rhodium(II)-catalyzed coupling with alcohols to selectively deliver (Z)-alkoxy enols (e.g., 3, Scheme 1).^{1,2} When generated under these neutral conditions, alkoxy enols are sufficiently stable to enable their manipulation in a number of synthetically useful ways. In particular, we have been interested in the sigmatropic chemistry of enols derived from allylic alcohols, which undergo exceptionally facile Claisen rearrangement to furnish tertiary α -hydroxy carbonyl compounds.¹⁻³ Recently, we reported the extension of this tandem enol formation/Claisen process to furnish tertiary α -hydroxy allenes.^{2,4} In that study, it was found that the standard Claisen conditions, when applied to propargylic alcohols, also gave rise to a byproduct derived from an apparent [2,3]-rearrangement (e.g., 5, Scheme 1). Furthermore, the amount of 5 coproduced was dependent both on catalyst load and ligand. In this communication, we describe investigations that establish the [2,3]-rearrangement as a versatile, Lewis acidcatalyzed process that can be selectively promoted or suppressed. In addition, enantioselective [2,3]-rearrangement can be realized using a chiral Lewis acid promoter.

Extensive catalyst screening further clarified the relationship between catalyst structure and reaction course (i.e., $1 \rightarrow 4$ vs $1 \rightarrow 5$, Scheme 1), revealing a substantial dependence on electronics (cf., Rh₂(cap)₄ vs Rh₂(tfa)₄).^{5,6} However, at the outset, it was unclear if the observed catalyst dependence derived from perturbation of the primary signatropic event or catalysis of a secondary [1,2]- α -ketol rearrangement (i.e., 4 \rightarrow 5, Scheme 1). Our studies with allyloxy enols, which undergo [3,3]-rearrangement regardless of the Rh(II) catalyst employed, first led us to speculate that the latter process was more likely. In an effort to substantiate this hypothesis, we devised the isotope-labeling study shown in Scheme 2.

Diazoketone 1 was combined with 3-butyn-2-ol (2) under both [3,3]-selective (i.e., Rh₂(cap)₄) and [2,3]-selective (i.e., Rh₂(tfa)₄) conditions. Incorporated in each reaction was the independently prepared, deuterium-labeled analogue of the unanticipated regioisomer. Use of $Rh_2(tfa)_4$ in the presence of D-4 gave rise to the apparent [2,3]-product 5 free of deuterium incorporation.

A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748.
(2) Wood, J. L.; Moniz, G. A. Org. Lett. 1999, 1, 371.
(3) Wood, J. L.; Holubec, A, A.; Stoltz, B. M.; Weiss, M. M.; Dixon, J. A.; Doan, B. D.; Shamji, M. F.; Chen, J. M.; Heffron, T. P. J. Am. Chem. Soc. 1999, 121, 6326.

(4) For recent synthetic applications of allenes, see: (a) Wan, Z.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470. (b) Jonasson, C.; Horvath, A.; Backvall, J.-E. J. Am. Chem. Soc. 2000, 122, 9600. (c) Wender, P. A.; Zhang, L. Org. Lett. 2000, 2, 2323.

(5) For a discussion of the electron-rich nature of the $Rh_2(cap)_4$ catalyst, see: Doyle, M. P.; Westrum, L. J.; Wolthuis, W. N. E.; See, M. M.; Boone, W. P.; Bagheri, V.; Pearson, M. M. *J. Am. Chem. Soc.* **1993**, *115*, 958.

(6) For discussions of the electron-deficient nature of the Rh2(tfa)4 catalyst, see: (a) Doyle, M. P.; Colsman, M. R.; Chinn, M. S. Inorg. Chem. 1984, 23, 3684. (b) Davies, H. M. L. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol 4, p 1031. (c) Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797.

Scheme 1

Scheme 2

Scheme 3

Similarly, use of Rh₂(cap)₄ in the presence of D-5 gave exclusively protic [3,3]-product 4, illustrating that the anticipated [1,2]- α ketol rearrangement process was not operative.

Having demonstrated that rearrangement products 4 and 5 arise via independent pathways, we began to favor a mechanism wherein the rhodium(II) catalyst adopts a dual role, promoting both enol formation and [2,3]-rearrangement. In this scenario, coordination of Rh(II) to the enol ether oxygen promotes an S_NI' process (Scheme 3). Attenuating the Lewis acidity of the Rh(II) catalyst (i.e., Rh₂(cap)₄ vs Rh₂(tfa)₄) would therefore be expected to slow this process, enabling thermal [3,3]-rearrangement to predominate. Initial support for this hypothesis was found in the reaction kinetics, which showed that [2,3]-rearrangement of 3 in the presence of 0.1 mol % Rh₂(tfa)₄ ($t_{1/2} = 5.4$ min, 25 °C) was dramatically accelerated relative to that in the presence of 1 mol % Rh₂(OAc)₄ ($t_{1/2} = 3.5$ h, 40 °C). To demonstrate that this rate enhancement derived from interaction of the enol with Rh(II), we treated a solution of 1 and 2 (1.2 equiv) with 1 mol % Rh₂-(OAc)₄, cleanly generating enol **3** (Scheme 4, observed by ¹H

⁽¹⁾ Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A.

Scheme 4

Table 1. Examples with Doubly Stabilized α -Diazoketones¹¹

R	Me +	Alcohol	Rh ₂ (L) ₄		+	R HO J
1 R = I	Ph/6R=C	⊃₂Me		[3,3]		[2,3]
Entry	Alcohol Di	azoketone	Conditions	Yield [3,3]	ield [2,3]
la		1	$A^{\mathbf{a}}_{\mathbf{B}^{\mathbf{b}}}$	22% ^c	- 87%	لى
16	<i>//</i>	6	A B	:	- 62%	·=
2a	он	1	A ^d B	-	- 68%	مەر
2b ^{Me}	/-	6	A B	:	- 61%)≕·= Me
3a	Me	1	A B	81%	- 82%	
3b	Он	6	A B	:	- 60%	`` =∙ ∋, Me
4a	^{Me} √ ^{Me}	1	A B	52%	- 50%	್ಷ್ Me
4b	ОН	6	A B	-	- 43%	`=·≕ Me

^{*a*} Conditions A: 0.5 mol % Rh₂(cap)₄, PhH, reflux, 10 min. ^{*b*} Conditions B: 0.25 mol % Rh₂(tfa)₄, PhH, 10 min rt (1) or reflux (6). ^{*c*} A 44% yield of tautomerized product was also isolated. ^{*d*} An 83% yield of tautomerized product was isolated exclusively.

NMR).⁷ Treatment of the enol solution with 0.5 mol % $Rh_2(tfa)_4$ resulted in rapid [2,3]-rearrangement at room temperature, a process that could be completely suppressed by prior addition of dimethyl sulfide (2 equiv) to yield only [3,3]-rearrangement product **4** upon heating.⁸

Having established the basis for the divergent reactivity of enol 3, we explored our ability to manipulate reaction outcome in related substrates. As shown in Tables 1 and 2, similar control can be achieved with a number of α -diazoketones and propargylic alcohols affording a variety of substituted allenes in good to excellent yield. With doubly stabilized α -diazoketones (i.e., 1 and 6), use of $Rh_2(tfa)_4$ affords exclusively the product of [2,3]rearrangement. Use of Rh₂(cap)₄ generates the [3,3]-product with 1; however, this catalyst does not efficiently dediazotize 6. The identical conditions (Rh₂(cap)₄, benzene, reflux) are employed to effect exclusive [3,3]-rearrangement with monostabilized α -diazoketones (i.e., 7 and 8, Table 2), while the harsher Rh₂-(tfa)₄ catalyst is replaced by a higher catalyst loading of the more mild Rh₂(oct)₄ to furnish the [2,3]-product.⁹ In accord with our studies of allyloxy enols, tautomerization of propargyloxy enols is observed to compete with [3,3]-rearrangement in certain

(9) Use of Rh₂(tfa)₄ with monostabilized α -diazoketones leads, in general, to intractable mixtures of products. The Rh₂(oct)₄ catalyst is electronically similar to Rh₂(OAc)₄ with solubility equivalent to Rh₂(tfa)₄.

(10) The principal byproduct in reactions with 2-methyl-3-butyn-2-ol is the corresponding (*Z*)-enone (e.g., **i**, **ii**) which arises via β -hydride elimination of the uncaptured carbenoid, see: Taber, D. F.; Herr, R. J.; Pack, S. K.; Geremia, J. M. *J. Org. Chem.* **1996**, *61*, 2908.

$$R \xrightarrow{Me} IR = CH_2CO_2EI$$

$$II R = C_3H_7$$

Table 2. Examples with Monostabilized α -Diazoketones¹¹

	· · · ·					
R M	0 	Alcohol	Rh ₂ (L) ₄	R HO Me	+	R HO
7 R =	(CH ₂) ₂ CO ₂ N	/le/8R=	(CH ₂) ₃ CH ₃	[3,3]		[2,3]
Entry	Alcohol D	iazoketon	e Conditions	Yield [3,3]	Yield [:	2,3]
la		7	$\mathbf{A}^{\mathbf{a}}_{\mathbf{B}^{\mathbf{b}}}$	64% -	- 60%	ę
1b	// OH	8	A B	68% -	- 62%	~~
2a	он	7	A B	66% -	- 68%	~ ^{~~} =·=
2b ^{Me}		8	A B	67% -	- 66%	Me
3a	Me	7	A B	60% -	- 65%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3b	- OF	8	A B	69% -	- 60%	
4a	Me Me	7	A B ^{c.d}	41%	40%	್ಸ್ Me
4b	<i>∭</i> ו•	8	A^{e}_{Γ}	38%	:	` ≕∙ ≕ Me

^{*a*} Conditions A: 0.25 mol % Rh₂(cap)₄, PhH, reflux, 10 min. ^{*b*} Conditions B: 5 mol % Rh₂(oct)₄, PhH, reflux, 10 min. ^{*c*} 20 mol % Rh₂(oct)₄ was employed. ^{*d*} An 11% yield of enone **i** (ref 10) was also isolated. ^{*e*} A 5% yield of enone **ii** (ref 10) was also isolated. ^{*f*} Only enone **ii** (ref 10) was isolated in 25% yield.

Table 3. Effect of Lewis Acid Additives on Rearrangement of Enol 3^a

Lewis acid additive/conditions	5:4 ^b	yield, %
no additive, PhH, Δ , 10 min	1:2.3	78
1 equiv CuSO ₄ , PhH, Δ , 10 min	2.5:1	70
5 mol % AgBF ₄ , PhH, rt, 2 min	60:1	80
15 mol % $[Sn-((S,S)-Ph-pybox)](OTf)_2$ (9),	>100:1	76
CH ₂ Cl ₂ , rt, 35 min		
2.5 mol % [Cu $-((S,S)$ -Ph-pybox)](OTf) ₂ (10),	>100:1	67
PhH, rt, 5 min		

^{*a*} Generated in all cases by treatment of **1** and **2** with 1 mol % $Rh_2(OAc)_4$, rt, 5 min. ^{*b*} Ratios determined by integration of ¹H NMR resonances.

substrates due to a substituent-controlled reduction in [3,3] rate.² However, this competition is not observed with [2,3]-rearrangement. Reduced yields are observed for both processes with 2-methyl-3-butyn-2-ol (cf., entries 4a,b) due to inefficient carbenoid capture.¹⁰

The determination that $Rh_2(tfa)_4$ was functioning in a Lewis acidic capacity to facilitate [2,3]-rearrangement led to an investigation of other Lewis acid additives for similar activity. As can be seen in Table 3, enol **3** is successfully intercepted by several Lewis acids, including (pybox)-Sn(II) (**9**) and (pybox)-Cu(II) (**10**) catalysts which afford, at room temperature and with low catalyst loadings, the [2,3]-product (**5**) via a *three-step, two metal-catalyzed process*.¹²

The success of Lewis acids **9** and **10** prompted us to explore the possibility of asymmetric induction in the [2,3]-rearrangement (Scheme 5). We were delighted to find that treatment of α -diazoketone **1** and propargyl alcohol (1.2 equiv) with 1 mol % Rh₂(OAc)₄ affords enol **11**, which, upon treatment with [Cu(*S*,*S*)-Ph-pybox(H₂O)₂](OTf)₂ (**12**), affords (*R*)-**13** in 61% yield¹³ and

⁽⁷⁾ \leq 10% [2,3]-rearrangement of enol **3** is observed after 1 h in the presence of 1 mol % Rh₂(OAc)₄ at 25 °C.

⁽⁸⁾ This catalyst inhibition experiment illustrates the Rh(II)-dependent nature of the [2,3]-rearrangement and the catalyst independence of the [3,3]-rearrangement. The selection of dimethyl sulfide was based on the large K_{eq} reported for binding of tetrahydrothiophene to Rh₂(but)₄, see: Drago, R. S.; Bilgrien, C. J. *Polyhedron* **1988**, 7, 1453.

⁽¹¹⁾ The structure assigned to each compound is in accord with its infrared and high-field ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra as well as with appropriate parent ion identification by high-resolution mass spectrometry.

⁽¹²⁾ For the preparation of bis(oxazolinyl)pyridine catalysts 9 and 10, see:
(a) Evans, D. A.; MacMillan, D. W. C.; Campos, K. R. J. Am. Chem. Soc. 1997, 119, 10859. (b) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669.

^{(13) (}S)-(-)-15 is isolated as a byproduct of this reaction (30% yield); however, isotope-labeling studies prove that 15 is not derived from 13 (see Supporting Information). Rather, it is believed to arise from the same complex 14 via a proton-transfer event.

Scheme 5

Figure 1. Computational structure of enol complex 14.

90% ee. The sense of stereochemical induction is predicted by enol complex **14** (Figure 1), which represents the calculated global minimum conformation of this complex by Monte Carlo methods, further minimized by PM3 level calculations.^{14,15}

In summary, we have shown that (*Z*)-propargyloxy enols are capable of undergoing rearrangement to allenyl α -hydroxyketones via thermal [3,3]-rearrangement and Lewis acid-catalyzed [2,3]-rearrangement pathways. The latter has proven amenable to asymmetric catalysis, affording [2,3]-rearrangement product in good yield and high % ee. Further studies into asymmetric catalysis of the [2,3]-rearrangement and the chemistry of alkoxy enols are in progress.

Acknowledgment. We are pleased to acknowledge the support of this investigation by Bristol-Myers Squibb, Eli Lilly, Glaxo-Wellcome, Yamanouchi, Merck, Pfizer, and Zeneca through their Faculty Awards Programs and the Camille and Henry Dreyfus Foundation through a Teacher-Scholar Award. G.A.M. thanks Bristol-Myers Squibb for a graduate fellowship. J.L.W. is a fellow of the Alfred P. Sloan Foundation. The authors are grateful to Professor David A. Evans for helpful discussions.

Supporting Information Available: Spectral data, experimental data, and stereochemical proofs pertaining to all products illustrated in Schemes 2, 4, and 5 and Tables 1 and 2 as well as details regarding the computation of complex **14** (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA015727H

⁽¹⁴⁾ This stereochemical model is based upon those of Evans and co-workers, see: Evans, D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W. J. Am. Chem. Soc. **1999**, *121*, 686.

⁽¹⁵⁾ The opposite enantiomer, (S)-(-)-**13**, can be prepared using the [Cu-(R, R)-Ph-pybox(H₂O)₂](OTf)₂ catalyst in equivalent yield and enantiomeric excess.